Publication

Articles

2025

  1. Sc6MTe2:六方晶Fe2P型構造をもつ新しい超伝導体ファミリー
    岡本佳比古, 山川洋一
    固体物理 60, 215-223, (2025), (2025年4月15日出版)
  2. Odd-parity bond order and induced nonreciprocal transport in the kagome metal CsTi3B5 driven by quantum interference,
    J. Huang, Y. Yamakawa, R. Tazai, T. Morimoto, and H. Kontani,
    Phys. Rev. B 111, 125153 (2025). (Published 24 March, 2025)
  3. Giant impurity effects on charge loop current order states in kagome metals,
    S. Nakazawa, R. Tazai, Y. Yamakawa, S. Onari, and H. Kontani,
    Phys. Rev. B 111, 075161 (2025). (Published 25 February, 2025)

2024

  1. Real-Space Loop Current Pattern in Time-Reversal-Symmetry Breaking Phase in Kagome Metals,
    K. Shimura, R. Tazai, Y. Yamakawa, S. Onari, and H. Kontani,
    J. Phys. Soc. Jpn. 93, 033704 (2024). (Published 15 March, 2024)
  2. 1次元ファンデルワールス結晶Ta4SiTe4における熱電効果,
    岡本佳比古, 山川洋一, 竹中康司,
    固体物理 59, 95-105 (2024). (2024年2月15日出版)
  3. Superconductivity in Ternary Germanide ScPdGe and Silicide ScPdSi,
    Y. Shinoda, Y. Okamoto, Y. Yamakawa, H. Takatsu, H. Kageyama, D. Hirai, and K. Takenaka,
    J. Phys. Soc. Jpn. 93, 023701 (2024). (Published 15 February, 2024)
  4. Superconductivity in Ternary Zirconium Telluride Zr6MTe2 with 3d Transition Metals,
    H. Matsumoto, Y. Yamakawa, R. Okuma, D. Nishio-Hamane, and Y. Okamoto,
    J. Phys. Soc. Jpn. 93, 023705 (2024). (Published 15 February, 2024)
  5. Low temperature phase transitions inside the CDW phase in the kagome metals AV3Sb5 (A=Cs, Rb, K): Significance of mixed-type Fermi surface electron correlations,
    J. Huang, R. Tazai, Y. Yamakawa, S. Onari, and H. Kontani,
    Phys. Rev. B 109, L041110 (2024). (Published 25 January, 2024)
  6. Drastic magnetic-field-induced chiral current order and emergent current-bond-field interplay in kagome metals,
    R. Tazai, Y. Yamakawa, and H. Kontani,
    Proc. Natl. Acad. Sci. U.S.A. 121, e2303476121 (2024). (Published 11 January, 2024)

2023

  1. Charge-loop current order and Z3 nematicity mediated by bond order fluctuations in kagome metals,
    R. Tazai, Y. Yamakawa, and H. Kontani,
    Nature Communications 14, 1 (2023).(Published 29 November, 2023)
  2. Superconductivity in Ternary Scandium Telluride Sc6MTe2 with 3d, 4d, and 5d Transition Metals,
    Y. Shinoda, Y. Okamoto, Y. Yamakawa, H. Matsumoto, D. Hirai, and K. Takenaka,
    J. Phys. Soc. Jpn. 92, 103701 (2023). (Published 15 October, 2023)
  3. Unconventional density waves and superconductivities in Fe-based superconductors and other strongly correlated electron systems,
    H. Kontani, R. Tazai, Y. Yamakawa, and S. Onari,
    Advances in Physics 70, 355 (2021). (Published online: 10 January 2023)
  4. Rigorous formalism for unconventional symmetry breaking in Fermi liquid theory and its application to nematicity in FeSe,
    R. Tazai, S. Matsubara, Y. Yamakawa, S. Onari, and H. Kontani,
    Phys. Rev. B 107, 035137 (2023). (Published 23 January, 2023)

2022

  1. Correlation-driven electronic nematicity in the Dirac semimetal BaNiS2,
    C. J. Butler, Y. Kohsaka, Y. Yamakawa, M. S. Bahramy, S. Onari, H. Kontani, T. Hanaguri, and S. Shamoto,
    Proc. Natl. Acad. Sci. U.S.A. 119, e2212730119 (2022). (Published 6 December, 2022)
  2. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs),
    R. Tazai, Y. Yamakawa, S. Onari, and H. Kontani,
    Science Advances 8, eabl4108 (2022). (Published 1 April, 2022)

2022

  1. Superconductors, κ-(BEDT-TTF)2X, and Coupled Chain Hubbard Models: Functional-renormalization-group Analysis,
    R. Tazai, Y. Yamakawa, M. Tsuchiizu, and H. Kontani, d- and p-wave Quantum Liquid Crystal Orders in Cuprate
    J. Phys. Soc. Jpn. 90, 111012 (2021). (Published 15 November, 2021)
  2. Unconventional orbital charge density wave mechanism in the transition metal dichalcogenide 1T-TaS2,
    T. Hirata, Y. Yamakawa, S. Onari, and H. Kontani,
    Phys. Rev. Research 3, L032053 (2021). (Published 27 August, 2021)
  3. Pressure-induced reconstitution of Fermi surfaces and spin fluctuations in S-substituted FeSe,
    T. Kuwayama, K. Matsuura, J. Gouchi, Y. Yamakawa, Y. Mizukami, S. Kasahara, Y. Matsuda, T. Shibauchi, H. Kontani, Y. Uwatoko, and N. Fujiwara,
    Scientific Reports 11, 17265 (2021). (Published 26 August, 2021)
  4. Prediction of pseudogap formation due to d-wave bond-order in organic superconductor κ-(BEDT-TTF)2X,
    R. Tazai, Y. Yamakawa, M. Tsuchiizu, and H. Kontani,
    Phys. Rev. Research 3, L022014 (2021). (Published: 19 May, 2021)
  5. Superconductivity in Nb2Pd3Te5 and Chemically-Doped Ta2Pd3Te5,
    N. Higashihara, Y. Okamoto, Y. Yoshikawa, Y. Yamakawa, H. Takatsu, H. Kageyama, and K. Takenaka,
    J. Phys. Soc. Jpn. 90, 063705 (2021). (Published 15 June, 2021)
  6. Development of Spin Fluctuations under the Presence of d-wave Bond Order in Cuprate Superconductors,
    S. Ando, Y. Yamakawa, S. Onari, and H. Kontani,
    J. Phys. Soc. Jpn. 90, 063704 (2021). (Published 15 June, 2021)
  7. Emergence of charge loop current in the geometrically frustrated Hubbard model: A functional renormalization group study,
    R. Tazai, Y. Yamakawa, and H. Kontani,
    Phys. Rev. B 103, L161112 (2021). (Published 28 April, 2021)
  8. Odd-parity spin-loop-current order mediated by transverse spin fluctuations in cuprates and related electron systems,
    H. Kontani, Y. Yamakawa, R. Tazai, and S. Onari,
    Phys. Rev. Research 3, 013127 (2021). (Published 10 February, 2021)

2020

  1. High-mobility carriers induced by chemical doping in the candidate nodal-line semimetal CaAgP,
    Y. Okamoto, K. Saigusa, T. Wada, Y. Yamakawa, A. Yamakage, T. Sasagawa, N. Katayama, H. Takatsu, H. Kageyama, and K. Takenaka,
    Phys. Rev. B 102, 115101 (2020). (Published 1 September, 2020)
  2. Doping effects on electronic states in electron-doped FeSe: Impact of self-energy and vertex corrections,
    Y. Yamakawa, S. Onari, and H. Kontani,
    Phys. Rev. B 102, 081108(R) (2020). (Published 11 August, 2020)
  3. 汎関数くりこみ群法による教相関電子系の研究 ー2次元電子系におけるネマティック秩序ー,
    土射津昌久, 田財里奈, 山川洋一, 紺谷浩,
    固体物理 55, 195 (2020). (2020年5月11日出版)
  4. (Proceedings of J-Physics 2019: International Conference on Multipole Physics and Related Phenomena)
    Electronic Properties of BaPtP with a Noncentrosymmetric Cubic Crystal Structure,
    Y. Okamoto, R. Mizutani, Y. Yamakawa, H. Takatsu, H. Kageyama, and K. Takenaka,
    JPS Conf. Proc. 29, 011001 (2020).

2019

  1. Superconductivity in PtSbS with a Noncentrosymmetric Cubic Crystal Structure,
    R. Mizutani, Y. Okamoto, H. Nagaso, Y. Yamakawa, H. Takatsu, H. Kageyama, S. Kittaka, Y. Kono, T. Sakakibara, and K. Takenaka,
    J. Phys. Soc. Jpn. 88, 093709 (2019). (Published 15 September, 2019)
  2. M. Takeuchi, N. Fujiwara, T. Kuwayama, S. Nakagawa, S. Iimura, S. Matsuishi, Y. Yamakawa, H. Kontani, and H. Hosono, Pressure-induced quantum critical point in the heavily hydrogen-doped iron-based superconductor LaFeAsO,
    Phys. Rev. B 99, 174517 (2019). (Published 28 May, 2019)

2018

  1. Self-energy driven resonancelike inelastic neutron spectrum in the s++-wave state in Fe-based superconductors,
    L. Takeuchi, Y. Yamakawa, and H. Kontani,
    Phys. Rev. B 98, 165143 (2018). (Published 29 October, 2018)
  2. H. Nakaoka, Y. Yamakawa, and H. Kontani,
    Pairing mechanism for nodal s-wave superconductivity in BaFe2(As,P)2: Analysis beyond Migdal-Eliashberg formalism,
    Phys. Rev. B 98, 125107 (2018). (Published 5 September, 2018)
  3. Edge-induced Strongly Correlated Electronic States in Two-dimensional Hubbard Model: Enhancement of Magnetic Correlations and Self-energy Effects,
    S. Matsubara, Y. Yamakawa, and H. Kontani,
    J. Phys. Soc. Jpn. 87, 073705 (2018). (Published 15 July, 2018)
  4. Large thermoelectric power factor in one-dimensional telluride Nb4SiTe4 and substituted compounds,
    Y. Okamoto, T. Wada, Y. Yamakawa, T. Inohara, and K. Takenaka,
    Appl. Phys. Lett. 112, 173905 (2018). (Published 23 April, 2018)
  5. Multistage electronic nematic transitions in cuprate superconductors: A functional-renormalization-group analysis,
    M. Tsuchiizu, K. Kawaguchi, Y. Yamakawa, and H. Kontani,
    Phys. Rev. B 97, 165131 (2018). (Published 19 April, 2018)
  6. Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1−xSx,
    Y. Sato, S. Kasahara, T. Taniguchi, X. Xing, Y. Kasahara, Y. Tokiwa, Y. Yamakawa, H. Kontani, T. Shibauchi, and Y. Matsuda,
    Proc. Natl. Acad. Sci. U.S.A. 115, 1227 (2018). (Published 6 February, 2018)
  7. Observation of Dirac-like energy band and ring-torus Fermi surface associated with the nodal line in topological insulator CaAgAs,
    D. Takane, K, Nakayama, S. Souma, T. Wada, Y. Okamoto, K. Takenaka, Y. Yamakawa, A. Yamakage, T. Mitsuhashi, K. Horiba, H. Kumigashira, T. Takahashi, and T. Sato
    npj Quantum Materials 3, 1 (2018). (Published 9 January, 2018)

2017

  1. Nematicity, magnetism, and superconductivity in FeSe under pressure: Unified explanation based on the self-consistent vertex correction theory,
    Y. Yamakawa and H. Kontani,
    Phys. Rev. B 96, 144509 (2017). (Published 16 October, 2017)
  2. Superconductivity without a hole pocket in electron-doped FeSe: Analysis beyond the Migdal-Eliashberg formalism,
    Y. Yamakawa and H. Kontani,
    Phys. Rev. B 96, 045130 (2017). (Published 21 July, 2017)
  3. Crossing-line-node semimetals: General theory and application to rare-earth trihydrides,
    S. Kobayashi, Y. Yamakawa, A. Yamakage, T. Inohara, Y. Okamoto, and Y. Tanaka,
    Phys. Rev. B 95, 245208 (2017). (Published 20 June, 2017)
  4. Plain s-Wave Superconductivity near Magnetic Criticality: Enhancement of Attractive Electron–Boson Coupling Vertex Corrections,
    R. Tazai, Y. Yamakawa, M. Tsuchiizu, and H. Kontani,
    J. Phys. Soc. Jpn. 86, 073703 (2017). (Published 15 July, 2017)
  5. Competing Unconventional Charge-Density-Wave States in Cuprate Superconductors: Spin-Fluctuation-Driven Mechanism,
    K. Kawaguchi, Y. Yamakawa, M. Tsuchiizu, and H. Kontani,
    J. Phys. Soc. Jpn. 86, 063707 (2017). (Published 15 June, 2017)
  6. Large thermoelectric power factor at low temperatures in one-dimensional telluride Ta4SiTe4,
    T. Inohara, Y. Okamoto, Y. Yamakawa, A. Yamakage, and K. Takenaka,
    Appl. Phys. Lett. 110, 183901 (2017). (Published 1 May, 2017)
  7. Unusual nodal behaviors of the superconducting gap in the iron-based superconductor Ba(Fe0.65Ru0.35)2As2: Effects of spin-orbit coupling,
    L. Liu, K. Okazaki, T. Yoshida, H. Suzuki, M. Horio, L. C. C. Ambolode, II, J. Xu, S. Ideta, M. Hashimoto, D. H. Lu, Z.-X. Shen, Y. Ota, S. Shin, M. Nakajima, S. Ishida, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Mikami, T. Kakeshita, Y. Yamakawa, H. Kontani, S. Uchida, and A. Fujimori,
    Phys. Rev. B 95, 104504 (2017). (Published 6 March, 2017)

2016

  1. 軌道ネマティック秩序の理論―FeSeや各種鉄系超伝導体の統一的理解―,
    山川洋一, 紺谷浩,
    固体物理 51, 77-92 (2016). (2016年11月15日出版)
  2. Low Carrier Density Metal Realized in Candidate Line-Node Dirac Semimetals CaAgP and CaAgAs,
    Y. Okamoto, T. Inohara, A. Yamakage, Y. Yamakawa, and K. Takenaka,
    J. Phys. Soc. Jpn. 85, 123701 (2016). (Published 15 December, 2016)
  3. (査読なし)
    高温超伝導体で起きる電子の液晶状態,
    山川洋一,
    理フィロソフィア, vol. 31 (名古屋大学理学部・大学院理学研究科広報委員会), pp. 16–17. (2016). (2016年10月30日出版)
  4. Functional renormalization group study of orbital fluctuation mediated superconductivity: Impact of the electron-boson coupling vertex corrections,
    R. Tazai, Y. Yamakawa, M. Tsuchiizu, and H. Kontani,
    Phys. Rev. B 94, 115155 (2016). (Published 26 September, 2016)
  5. Synthesis and Superconducting Properties of a Hexagonal Phosphide ScRhP,
    T. Inohara, Y. Okamoto, Y. Yamakawa, and K. Takenaka,
    J. Phys. Soc. Jpn. 85, 094706 (2016). (Published 15 September, 2016)
  6. Theoretical prediction of nematic orbital-ordered state in the Ti oxypnictide superconductor BaTi2(As,Sb)2O,
    H. Nakaoka, Y. Yamakawa, and H. Kontani,
    Phys. Rev. B 93, 245122 (2016). (Published 9 June, 2016)
  7. Nematicity and Magnetism in FeSe and Other Families of Fe-Based Superconductors,
    Y. Yamakawa, S. Onari, and H. Kontani,
    Phys. Rev. X 6, 021032 (2016). (Published 3 June, 2016)
  8. Sign-Reversing Orbital Polarization in the Nematic Phase of FeSe due to the C2 Symmetry Breaking in the Self-Energy,
    S. Onari, Y. Yamakawa, and H. Kontani,
    Phys. Rev. Lett. 116, 227001 (2016). (Published 2 June, 2016)
  9. p-orbital density wave with d symmetry in high-Tc cuprate superconductors predicted by renormalization-group + constrained RPA theory,
    M. Tsuchiizu, Y. Yamakawa, and H. Kontani,
    Phys. Rev. B 93, 155148 (2016). (Published 25 April, 2016)
  10. Line-Node Dirac Semimetal and Topological Insulating Phase in Noncentrosymmetric Pnictides CaAgX (X = P, As),
    A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto,
    J. Phys. Soc. Jpn. 85, 013708 (2016). (Published 15 January, 2016)
  11. Superconductivity in the Hexagonal Ternary Phosphide ScIrP,
    Y. Okamoto, T. Inohara, Y. Yamakawa, A. Yamakage, and K. Takenaka,
    J. Phys. Soc. Jpn. 85, 013704 (2016). (Published 15 January, 2016)
  12. T. Urata, Y. Tanabe, K. K. Huynh, Y. Yamakawa, H. Kontani, and K. Tanigaki,
    Superconductivity pairing mechanism from cobalt impurity doping in FeSe: Spin (s+-) or orbital (s++) fluctuation,
    Phys. Rev. B 93, 014507 (2016). (Published 12 January, 2016)

2015

  1. Momentum-dependent sign inversion of orbital order in superconducting FeSe,
    Y. Suzuki, T. Shimojima, T. Sonobe, A. Nakamura, M. Sakano, H. Tsuji, J. Omachi, K. Yoshioka, M. Kuwata-Gonokami, T. Watashige, R. Kobayashi, S. Kasahara, T. Shibauchi, Y. Matsuda, Y. Yamakawa, H. Kontani, and K. Ishizaka,
    Phys. Rev. B 92, 205117 (2015). (Published 13 November, 2015)
  2. Revisiting orbital-fluctuation-mediated superconductivity in LiFeAs: Nontrivial spin-orbit interaction effects on the band structure and superconducting gap function,
    T. Saito, Y. Yamakawa, S. Onari, and H. Kontani,
    Phys. Rev. B 92, 134522 (2015). (Published 23 October, 2015)
  3. Quasiparticle interference in Fe-based superconductors based on a five-orbital tight-binding model,
    Y. Yamakawa and H. Kontani,
    Phys. Rev. B 92, 045124 (2015). (Published 27 July, 2015)
  4. Spin-Fluctuation-Driven Nematic Charge-Density Wave in Cuprate Superconductors: Impact of Aslamazov-Larkin Vertex Corrections,
    Y. Yamakawa and H. Kontani,
    Phys. Rev. Lett. 114, 257001 (2015). (Published 23 June, 2015)
  5. Spin-triplet superconductivity in Sr2RuO4 due to orbital and spin fluctuations: Analyses by two-dimensional renormalization group theory and self-consistent vertex-correction method,
    M. Tsuchiizu, Y. Yamakawa, S. Onari, Y. Ohno, and H. Kontani,
    Phys. Rev. B 91, 155103 (2015). (Published 6 April, 2015)
  6. Quantum critical behavior in heavily doped LaFeAsO1-xHx pnictide superconductors analyzed using nuclear magnetic resonance,
    R. Sakurai, N. Fujiwara, N. Kawaguchi, Y. Yamakawa, H. Kontani, S. Iimura, S. Matsuishi, and H. Hosono,
    Phys. Rev. B 91, 064509 (2015). (Published 19 February, 2015)

2014

  1. Reproduction of experimental gap structure in LiFeAs based on orbital-spin fluctuation theory: s++-wave, s±-wave, and hole-s±-wave states,
    T. Saito, S. Onari, Y. Yamakawa, H. Kontani, S. V. Borisenko, and V. B. Zabolotnyy,
    Phys. Rev. B 90, 035104 (2014).
  2. Linear Response Theory for Shear Modulus C66 and Raman Quadrupole Susceptibility: Evidence for Nematic Orbital Fluctuations in Fe-based Superconductors,
    H. Kontani and Y. Yamakawa,
    Phys. Rev. Lett. 113, 047001 (2014).
  3. High-Tc Superconductivity near the Anion Height Instability in Fe-Based Superconductors: Analysis of LaFeAsO1−xHx,
    S. Onari, Y. Yamakawa, and H. Kontani,
    Phys. Rev. Lett. 112, 187001 (2014).
  4. NMR Study on a Pnictide Superconductor LaFeAsO1−xHxin a H-Overdoped Regime: Revival of Antiferromagnetic Fluctuations,
    N. Fujiwara, S. Iimura, S. Matsuishi, H. Hosono, Y. Yamakawa, and H. Kontani,
    J. Supercond. Nov. Magn. 27, 933 (2014).

2013

  1. Zigzag Chain Structure Transition and Orbital Fluctuations in Ni-Based Superconductors,
    Y. Yamakawa, S. Onari, and H. Kontani,
    J. Phys. Soc. Jpn. 82, 094704 (2013).
  2. Detection of Antiferromagnetic Ordering in Heavily Doped LaFeAsO1-xHx Pnictide Superconductors Using Nuclear-Magnetic-Resonance Techniques,
    N. Fujiwara, S. Tsutsumi, S. Iimura, S. Matsuishi, H. Hosono, Y. Yamakawa, and H. Kontani,
    Phys. Rev. Lett. 111, 097002 (2013).
  3. Phase diagram and superconducting states in LaFeAsO1−xHx based on the multiorbital extended Hubbard model,
    Y. Yamakawa, S. Onari, H. Kontani, N. Fujiwara, S. Iimura, and H. Hosono,
    Phys. Rev. B 88, 041106(R) (2013).
  4. Effect of realistic finite-size impurities on Tc in Fe-based superconductors based on the five-orbital tight-binding model,
    Y. Yamakawa, S. Onari, and H. Kontani,
    Phys. Rev. B 87, 195121 (2013).
  5. (査読なし)
    鉄系超伝導体の理論研究 軌道揺らぎを中心に
    山川洋一,
    重い電子系の形成と秩序化 ニュースレター, Vol. 5 No. 2, pp. 54–55. (2013). (2013年3月出版)

2012

  1. Effect of inelastic scattering on the nuclear magnetic relaxation rate 1/T1T in iron-based superconductors,
    Y. Yamakawa, S. Onari, and H. Kontani,
    Supercond. Sci. Technol. 25, 084006 (2012).
  2. Impurity-induced electronic nematic state and C2-symmetric nanostructures in iron pnictide superconductors,
    Y. Inoue, Y. Yamakawa, and H. Kontani,
    Phys. Rev. B 85, 224506 (2012).
  3. Structural transition, ferro-orbital order and its fluctuation-mediated -wave superconductivity in iron pnictides,
    Y. Ōno, Y. Yanagi, N. Adachi, and Y. Yamakawa,
    Solid State Communications 152, 701 (2012).
  4. Orbital fluctuation theory in iron-based superconductors: -wave superconductivity, structure transition, and impurity-induced nematic order,
    H. Kontani, Y. Inoue, T. Saito, Y. Yamakawa, and S. Onari,
    Solid State Communications 152, 718 (2012).

2010

  1. Orbital Order, Structural Transition, and Superconductivity in Iron Pnictides,
    Y. Yanagi, Y. Yamakawa, N. Adachi, and Y. Ōno,
    J. Phys. Soc. Jpn. 79, 123707 (2010).
  2. Cooperative effects of Coulomb and electron-phonon interactions in the two-dimensional 16-band d-p model for iron-based superconductors,
    Y. Yanagi, Y. Yamakawa, N. Adachi, and Y. Ōno,
    Phys. Rev. B 82, 064518 (2010).
  3. Two types of s-wave pairing due to magnetic and orbital fluctuations in the two-dimensional 16-band d-p model for iron-based superconductors,
    Y. Yanagi, Y. Yamakawa, and Y. Ōno,
    Phys. Rev. B 81, 054518 (2010).
  4. (Proceedings of the 9th International Conference on Materials and Mechanisms of Superconductivity)
    Phase diagram of the two-dimensional 16-band d–p model for iron-based superconductors,
    Y. Yanagi, Y. Yamakawa, and Y. Ōno,
    Physica C: 470, S349 (2010).
  5. (Proceedings of International Conference on Magnetism (ICM 2009))
    Antiferromagnetic, charge and orbital order in Na05CoO2 based on the two dimensional 11 bands d-p model,
    Y. Yamakawa, N. Watanabe, and Y. Ōno,
    J. Phys.: Conf. Ser. 200, 012233 (2010).
  6. (Proceedings of International Conference on Magnetism (ICM 2009))
    Effect of the spin-orbit interaction and the electron phonon coupling on the electronic state in a silicon vacancy,
    T. Yamada, Y. Yamakawa, and Y. Ōno,
    J. Phys.: Conf. Ser. 200, 012228 (2010).

2009

  1. Structural Transition of Li2RuO3 Induced by Molecular-Orbit Formation,
    Y . Miura, M. Sato, Y. Yamakawa, T. Habaguchi, and Y. Ōno,
    J. Phys. Soc. Jpn. 78, 094706 (2009).
  2. Quadrupole Susceptibility and Elastic Softening due to a Vacancy in Silicon Crystal,
    T. Yamada, Y. Yamakawa, and Y. Ōno,
    J. Phys. Soc. Jpn. 78, 054702 (2009).
  3. (Proceedings of 25th International Conference on Low Temperature Physics (LT25))
    Cluster model calculations for charge states of a silicon vacancy,
    Y. Yamakawa and Y. Ōno,
    J. Phys.: Conf. Ser. 150, 042233 (2009).

2008

  1. Magnetism and Superconductivity in the Two-Dimensional 16-Band d– p Model for Iron-Based Superconductors,
    Y. Yanagi, Y. Yamakawa, and Y. Ōno,
    J. Phys. Soc. Jpn. 77, 123701 (2008).
  2. (Proceedings of International Conference on Spectroscopies in Novel Superconductors ’07 (SNS 2007))
    Antiferromagnetic, charge and orbital ordered states of Na0.5CoO2 based on the two-dimensional triangular lattice d–p model,
    Y. Yamakawa and Y. Ōno,
    J. Phys. Chem. Solids 69, 3349 (2008).
  3. (Proceedings of the International Symposium on Fe-Pnictide Superconductors)
    Electronic States and Pairing Symmetry in the Two-Dimensional 16 Band d–p Model for Iron-Based Superconductor,
    Y. Yanagi, Y. Yamakawa, and Y. Ōno,
    J. Phys. Soc. Jpn. 77, 149 (2008).
  4. (Proceedings of International Conference on New Quantum Phenomena in Skutterudite and Related Systems (Skutterudite2007))
    Effects of Electron Correlation and Electron–Phonon Coupling on the Quantum State of a Silicon Vacancy,
    Y. Yamakawa, K. Mitsumoto, and Y. Ōno,
    J. Phys. Soc. Jpn. 77, 266 (2008).

2007

  1. (Proceedings of the International Conference on Highly Frustrated Magnetism)
    Electronic state of NaxCoO2 based on the two-dimensional triangular lattice d–p model,
    Y. Yamakawa and Y. Ōno,
    J. Phys.: Condens. Matter 19, 145289 (2007).
  2. (Proceedings of the 17th International Conference on Magnetism)
    Nonadiabatic interaction between electrons and Jahn–Teller distortions in a silicon vacancy,
    Y. Yamakawa, K. Mitsumoto, and Y. Ōno,
    J. Magn. Magn. Mater. 310, 993 (2007).