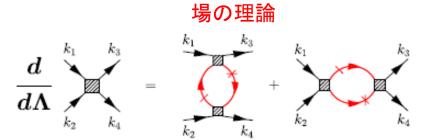

Sc研 (凝縮系理論)研究室紹介

2022年度版

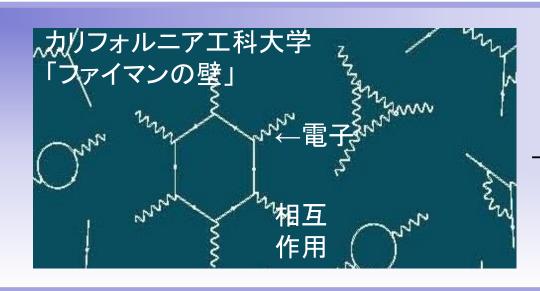



量子相転移(量子液晶)

超伝導現象

凝縮系理論とは?

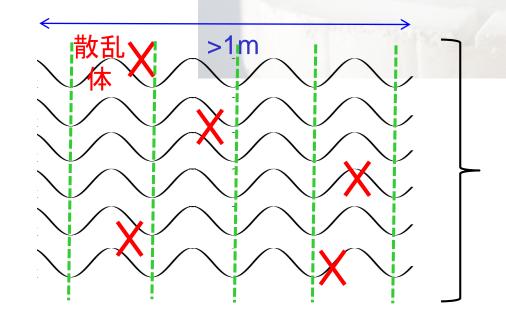
「無数の量子的粒子」が織りなす新現象・新概念を追求


本研究室では・・

統計 量子力学 力学凝縮系理論

重要課題!

高温超伝導体やp,d,f電子系など、 強く相互作用する電子系の新現象に興味を持っています。


理論研究のツール

場の量子論

→ Feynman diagram によって、金属電子 の謎を解明する!

例:超伝導・・・バラバラな電子の位相が、突如そろう!

$$\phi(\mathbf{r}_i) = |\phi(\mathbf{r}_i)|e^{i\theta_i}$$
 $\Psi = |\Psi|e^{i\theta}$ 巨視的量子現象 $\phi(\mathbf{r}_i) = |\phi(\mathbf{r}_i)|e^{i\theta_i}$ Cooper対(ボーズ粒子)

少々の散乱では壊れない

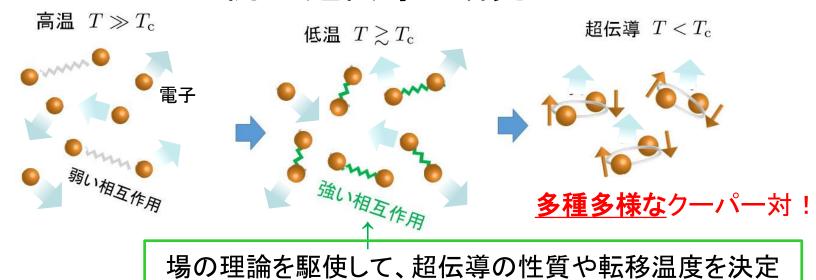
Sc研究室(凝縮系理論)について

<u>金属電子が織りなす新現象や新概念</u>を研究しています。

一エキゾティック超伝導、量子液晶、Dirac電子、輸送現象、場の理論 一

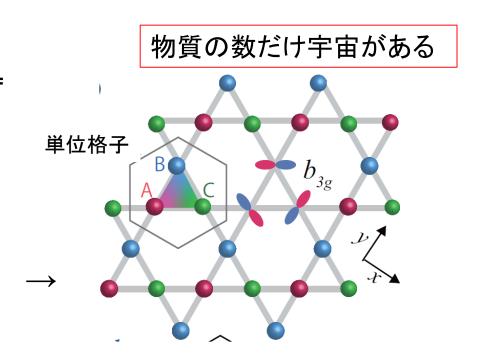
教員: 紺谷浩(教授)、小林晃人(准教授)、大成誠一郎(准教授)、山川洋一(講師)、田財里奈(特任助教)

博士学生(D2): 川村泰喜


修士学生(M2): 井上大輔、小川明里、鈴木一輝、横田奏帆 J. Huang (G30)

(M1): 志村昂輝、布田光槻、橋本敬宏、平上信一

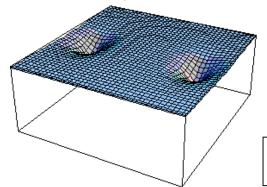
例: 超伝導の研究


超伝導=物理法則を一変させる特別な相転移

・マイスナー効果=光子が質量を獲得 =アンダーソン・ヒッグス機構

超伝導中のヒッグス粒子は2018年に発見!

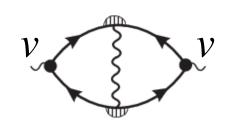
・高温超伝導、エキゾティック超伝導 例:カゴメ格子超伝導


フラストレート格子構造と量子力学

Sc研の歴史

中嶋貞雄先生

格子振動がもたらす電子間引力(1953年) BCS理論(1972年ノーベル賞)の礎に!


ゴム膜上の2つの球体 格子歪による電子間引力 中嶋先生とBardeen先生 (1986年、物性研究所)

エキゾティックな超伝導の研究がはじまる

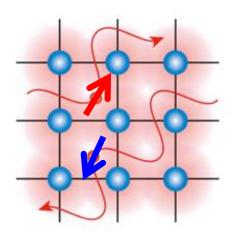
中野藤生先生

電気伝導度の厳密な中野・久保公式(1955年)

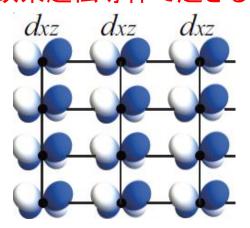
遅延グリーン関数

TKNN公式 2016年ノーベル賞

物性理論とトポロジーとの 蜜月関係がはじまる

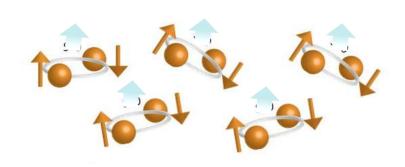

Dirac電子系、籠目電子系

中野先生を囲んで (2006年、名大理学館)

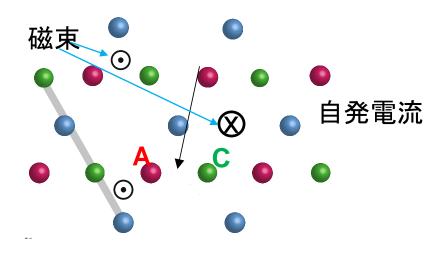


金属は「自発的対称性の破れ」の宝庫

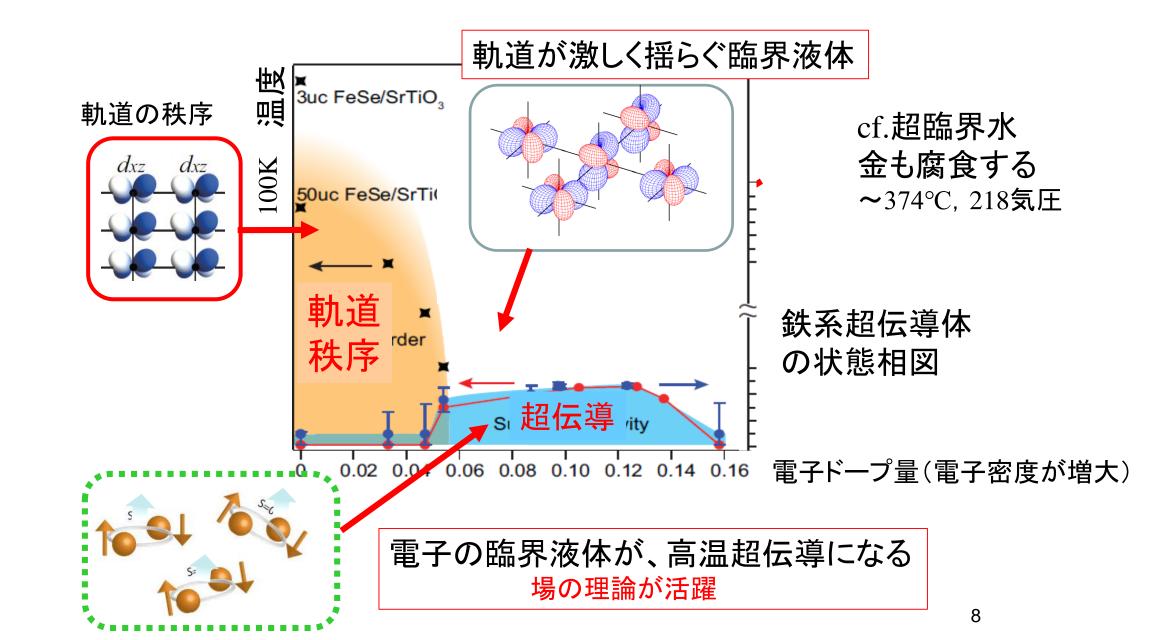
①無秩序 電子の液体



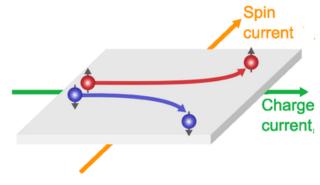
②軌道秩序 鉄系超伝導体で起きる

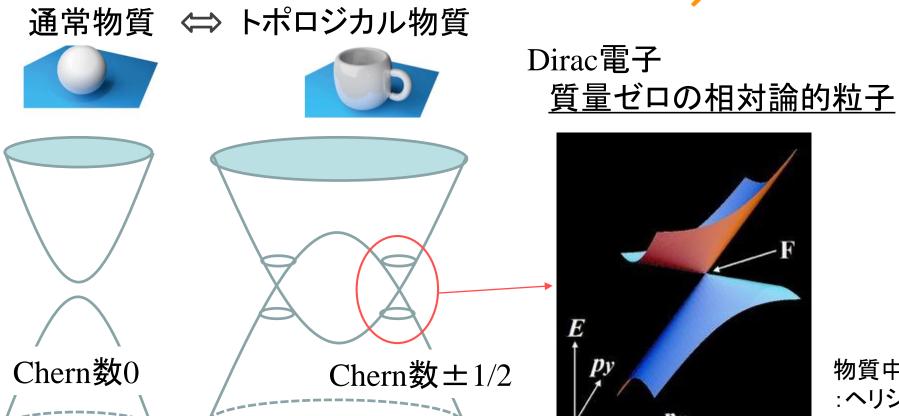


南部洋一郎 2008年ノーベル賞 自発的対称性の破れの発見

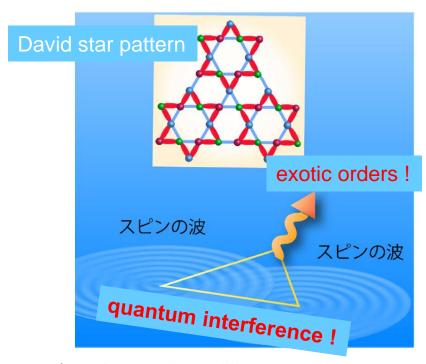

③超伝導 U(1)ゲージ対称性 が破れた量子液体

4電流秩序 時間反転対称性の破れ




色々な電子状態:鉄系高温超伝導体

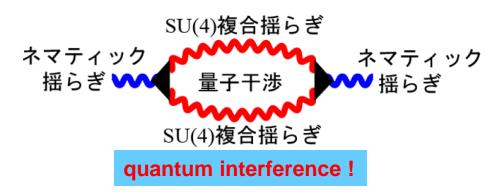
金属中の電子は姿を変える


2016年ノーベル物理学賞 物質のトポロジー D. J. Thouless、F. D. M. Haldane、J. M. Kosterlitz トポロジカル絶縁体、量子スピンホール効果

物質中のニュートリノ : ヘリシティ

Recent Press Release by Sc-Lab

カゴメ格子超伝導体 CsV₃Sb₅ に浮かび上がる ダビデ星模様と超伝導の謎を解明 ~幾何学フラストレーションと量子干渉効果の競演~


【論文情報】

Kagome metal AV₃Sb₅

雜誌名:Science Advances

論文タイトル: Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV₃Sb₅ (A=K, Rb, Cs)

著者:田財里奈、山川洋一、大成誠一郎、紺谷浩

自発的回転対称性の破れの発現機構の新発見 ~ツイスト2層グラフェンにおける複合自由度の重要性~

雜誌名: Physical Review Letter

論文タイトル: SU(4) Valley + Spin Fluctuation Interference Mechanism for Nematic Order in Magic-Angle Twisted Bilayer Graphene: The Impact of Vertex Corrections

著者: Seiichiro Onari (名古屋大学准教授), Hiroshi Kontani (名古屋大学教授)

magic-angle twisted-bilayer graphene (MATBG)

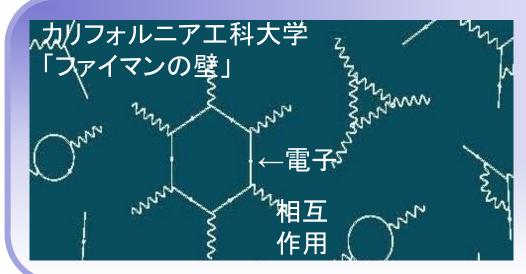
研究室の日々の活動

- 1. 研究室セミナー(毎週、通年) 各メンバーが年数回発表し、研究進捗の議論を行います。
- 2. M1輪講(毎週、通年) 教員を交えて、研究に必要な場の量子論を基礎から習得します。
- 3. 院生輪講(毎週、前期) 院生全員+教員で教科書を輪講して、Sc研夏の学校で発表します。 物性若手夏の学校にも出席できます。
- 4. コロキウム、集中講義(不定期) 外部から講師を招き、学生や教員の見聞を広げます。
- 5. 修士論文研究(日常的) 複数の教員たちと日々議論を重ねて、最先端の研究を行います。 研究成果を研究会や物理学会で発表し、論文にまとめます。 外部の研究者との共同研究も活発です。
- 6. 院生同士の議論(日常的) 大変活発です。最も有益かもしれません。

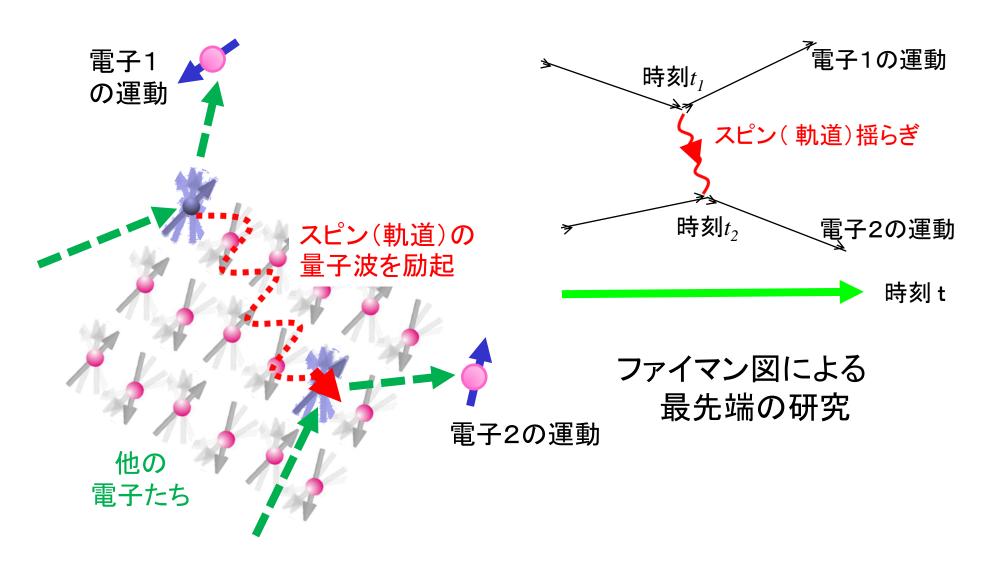
修士二年間のスケジュール(例)

	修士1年	修士2年
4月	授業開始	
5月	指導教員とテーマ	学振の申請書(進学希望者のみ)
6月	を決めて研究開始!	セミナー発表
7月	物性若手夏の学校	
8月	Sc研夏の学校で輪講発表	Sc研夏の学校で修論中間発表
9月	本格的に研究開始!	日本物理学会
10月		研究会発表
11月	研究室遠足(2018年は犬山城)	研究室遠足(2019年は日間賀島)
12月	集中講義	セミナー発表
1月	最初のセミナー発表	研究室修論発表会
2月	研究会発表	物理教室 修論発表会
3月	日本物理学会(順調なら)	日本物理学会

Sc研究室ギャラリー

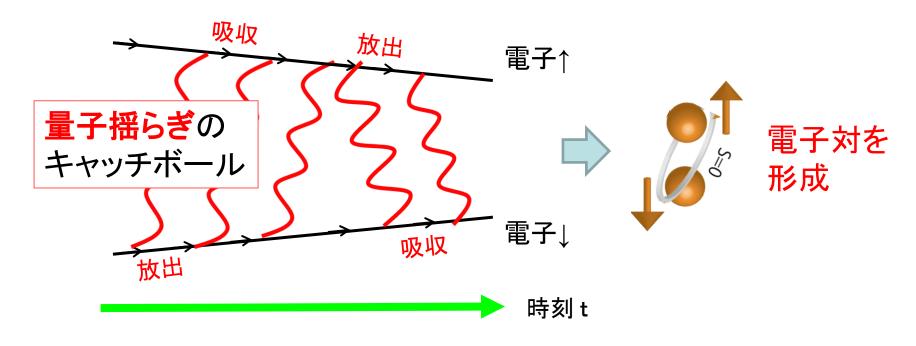


場の理論に基づく金属電子論



理論研究のツール

場の量子論


→ Feynman diagram によって、金属電子 の謎を解明する!

場の量子論による研究

"量子揺らぎ"がクーパー対をもたらす!

ファイマン図を用いた超伝導理論

"量子揺らぎ(ゴム膜)"を変えると、 多彩な超伝導が出現!

格子振動、スピン揺らぎ、軌道揺らぎ、...

湯川秀樹: 中間子理論 (1949年 ノーベル賞)

超伝導の研究

超伝導ギャップ方程式=豊かな方程式

$$\Delta(\mathbf{k}) = \frac{1}{N} \sum_{\mathbf{p}} V(\mathbf{k}, \mathbf{p}) \langle c_{\mathbf{p}\uparrow} c_{-\mathbf{p}\downarrow} \rangle$$

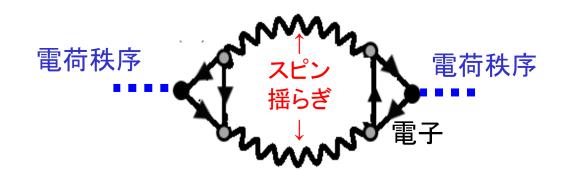
ギャップ関数

超伝導の顔

引力相互作用:

ダイヤグラムで計算 スピン揺らぎ、軌道揺らぎ、 フォノン、など

 $rac{ extbf{dig}}{\Delta(oldsymbol{k})} \propto \cos k_x - \cos k_y$



- ・Vの関数形により、 ギャップ関数の対称性が決まる。
- •Vが大きいほどTcが高くなる。

$$T_c \propto \exp\left(-1/\langle V \rangle N(0)\right)$$

理論の最前線: 摂動理論とくりこみ群理論

1. ファイマン図の方法

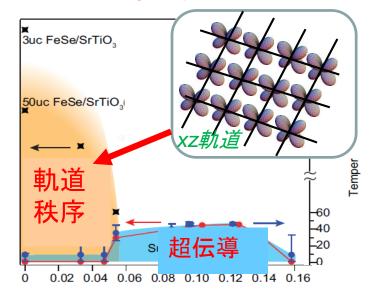
軌道秩序を与える ダイヤグラムを発見 Sc研発

=new physics の発見

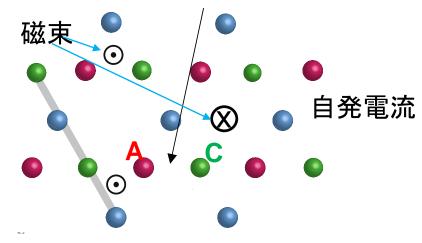
両者を組み合わせたユニークな研究を推進中!

2.くりこみ群法 高エネルギーの寄与を漸次積分し、 低エネルギーの有効相互作用を求める

(K. Wilson:ノーベル賞1982年~)

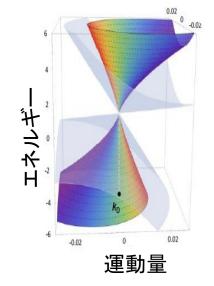

くりこみ群方程式: $\frac{d}{dl}$ $\frac{k_1}{k_2}$ $\frac{k_3}{k_4}$ $\frac{k_1}{k_2}$ $\frac{k_3}{k_4}$ $\frac{k_1}{k_2}$ $\frac{k_4}{k_4}$ $\frac{k_1}{k_2}$ $\frac{k_3}{k_4}$ $\frac{k_4}{k_2}$ $\frac{k_4}{k_4}$

Sc研の最前線の研究

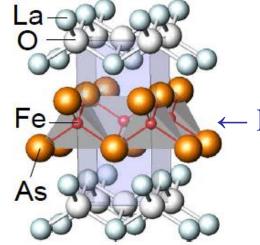

物性理論の中心的課題!

超伝導現象

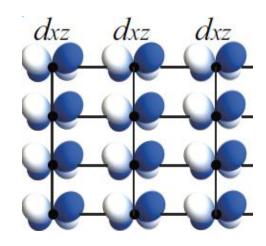
追厥


量子相転移 (量子液晶)

場の理論



Dirac電子系



鉄系超伝導体(2008年~)

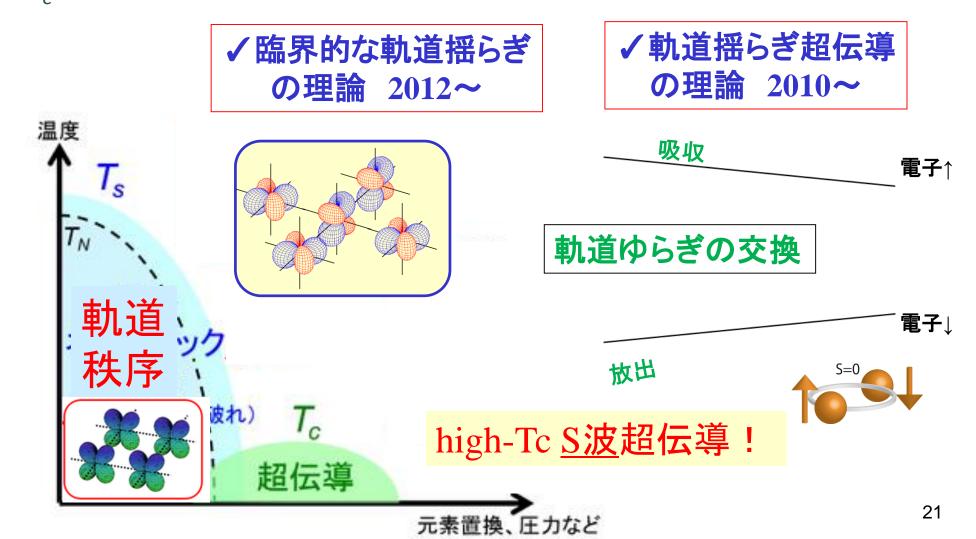
鉄系超伝導体の軌道秩序

← FeAs面の電子は 軌道自由度を獲得

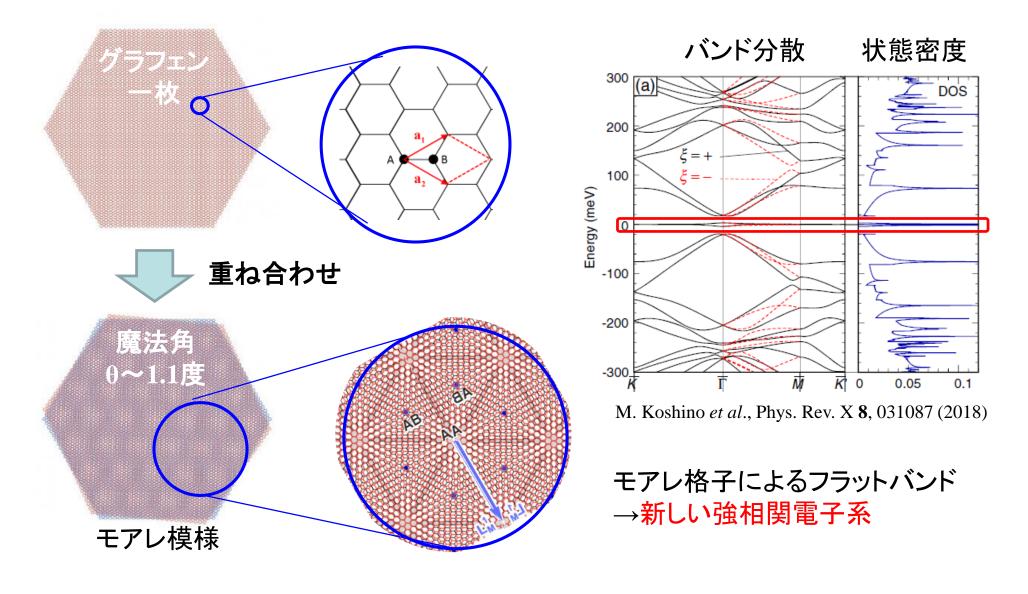
鉄の化合物が高温超伝導となることを発見 T₀=60K~100K ノーベル賞級!

21世紀に最も研究された超伝導体 (鉄の時代の到来!)

Sc研は、その理論を先導してきた 軌道揺らぎの理論

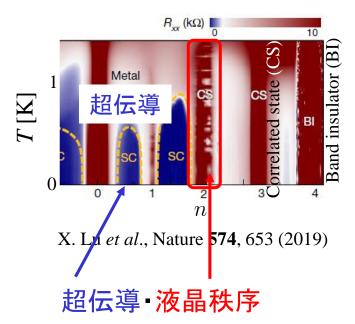


細野秀雄


鉄系超伝導体: 軌道揺らぎの物理

軌道秩序が溶けて、超伝導になる! $(T_c=60 \text{K} \sim 100 \text{K})$

Sc研が世界をリードする分野!

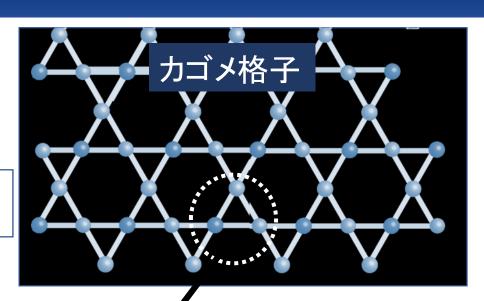

捻られた2層グラフェン:新規強相関電子系(2018~)

「モアレ格子」を電子が運動する新しい金属

捻られた2層グラフェン:新規強相関電子系(2018~)

新規な電子状態の宝庫 無限の可能性!

- 1. 液晶秩序の理論
 →SU(4)揺らぎによる液晶秩序
- 新しい量子力学原理 トポロジーとの関係


- 2. 超伝導の理論
 - →液晶揺らぎによる新規超伝導!?
- 3. 軌道偏極状態 → 異常ホール効果 トポロジカル絶縁状態 → スピンホール効果

現在の物性研究の主役!

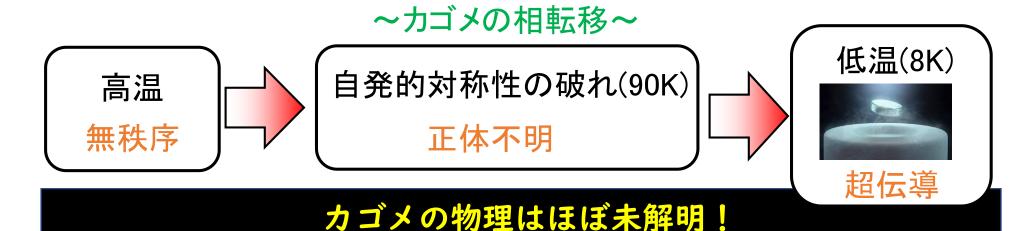
2019年に見つかった新しい超伝導 ~カゴメ超伝導~

原子●を籠目状 に敷きつめる

カゴメ格子の物理の何がおもしろりの??

- 普通の金属 $T \simeq 0$ 7 $S(\propto \log W) o 0$

熱力学第三法則が破れてる!?


低温でも、 エントロピーがOじゃない! 隣同士のスピンが"逆"向き →エネルギー的に得

→スピン配置が決まらず

=フラストレーション

カゴメ特有の物理

2019年に見つかった新しい超伝導 ~カゴメ超伝導~

カゴメが「超伝導」になる機構とは?

「超伝導」と「フラストレーション」の関係は?

「自発的対称性の破れ」の正体と起源は?

カゴメを記述する「普遍的な物理」とは?

new physicsを見つけるチャンス!若い研究者が活躍できるテーマ!

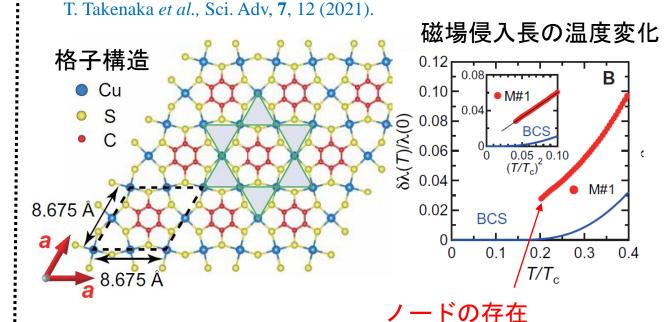
2019年に見つかった新しい超伝導 ~カゴメ超伝導~

私の現在のNewアイディア (論文投稿中!)

正体不明の一部が性の破れを対象を表現します。

多彩なカゴメ金属系(他にもある)

Si(1, 1, 1)表面のTI系カゴメ超伝導


- T. Zhang, et al., Nat. Phys. 6, 104 (2010).
- T. Uchihashi, et al., Phys. Rev. Lett. 107, 207001 (2011).
- T. Nakamura et al., Phys. Rev. B 98, 134505 (2018).

Si (1, 1, 1) 表面の 格子構造

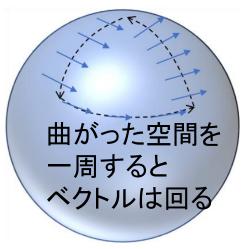
✓トリプレット超伝導が観測された

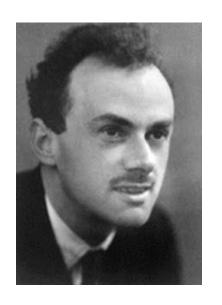
金属有機構造体[Cu₃(C₆S₆)]_n (Metal Organic Framework)

X. Huang, et al., Angew. Chem. Int. Ed. 57, 146 (2018).

非従来型超伝導が実現 → ボンド揺らぎ機構が適用できる可能性

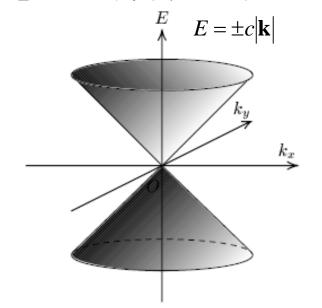
研究課題

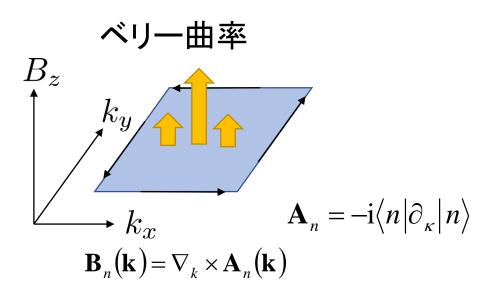

様々なカゴメ金属の超伝導相の普遍的発現機構を見出す。


固体中のDirac電子

Chern数(ベリー曲率の積分値)がゼロでない

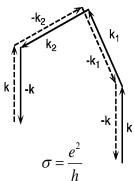
トポロジカル物性の出現


- ・量子スピンホール効果
- •巨大な反磁性
- -エッジ状態

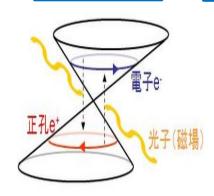


P. A. M. Dirac 1933 Novel prize

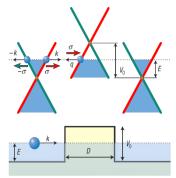
Dirac電子:波動関数の空間が曲がっている

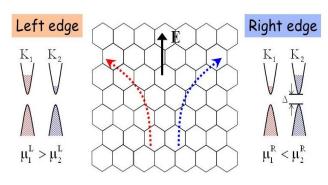

ディラック電子系の多様な物性

量子輸送

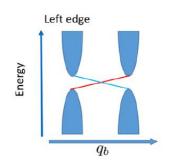

巨大反磁性

クライントンネリング

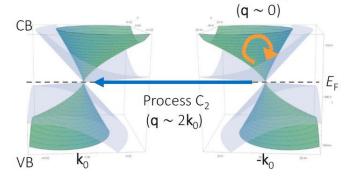

スピン(バレー)ホール効果


不純物を すり抜ける

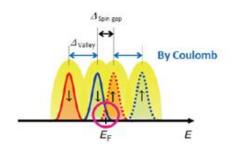
ベクトルポテンシャルの 量子効果



障壁を完全透過


磁場が無いのに曲がる

バルクエッジ対応


エッジ(表面)状態

長距離クーロン相互作用

ディラックコーンの変形とエキシトニック揺らぎ

特異なランダウ状態

量子ホール絶縁体

Sc研研究室紹介:まとめ

強相関電子系における新現象や新概念を、協力して研究中です。

新現象: 豊かな自発的対称性の破れ、高温超伝導、Dirac電子形成

新概念: 量子干渉効果、Dirac系やカゴメ金属の幾何学的性質

私たちと一緒に楽しく研究しましょう。

1. 多数の教員による充実した研究教育

自分に合ったテーマを選択できる。 学生の論文出版数や学振の採択率などの実績が豊富

2. トップレベルの研究を推進

世界的にも名の通った研究室 研究で一躍有名になれる良いテーマがある

3. 学生の多様性を尊重 研究を頑張って注目を集めたい人 仲間と理論を深く勉強したい人